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Two-phase phenomena, minority games, and herding models
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The recently discovered two-phase phenomenon in financial markets@Nature421, 130 ~2003!# is examined
with the German financial index DAX, minority games, and dynamic herding models. It is observed that the
two-phase phenomenon is an important characteristic of financial dynamics, independent of volatility cluster-
ing. An interacting herding model correctly produces the two-phase phenomenon.
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I. INTRODUCTION

In recent years, much attention of physicists has b
drawn to dynamics of financial markets@1–14#. From the
view of many-body systems, interactions among agents
producers may generate long-range temporal correlation
financial dynamics, and therefore result in the so-called
namic scaling behavior. To clearly observe the scaling beh
ior, one needs to carefully investigate the dynamics at
‘‘microscopic’’ level.

By analyzing the time seriesy(t8) of a financial index in
minutes or seconds, Mantegna and Stanley discovered t
scaling behavior of the probability distributionP(Z,t) of the
return Z5y(t81t)2y(t8) in a shorter time t @1#. P(Z,t)
exhibits a characteristic fat tail in regime of larger return
The exponent of the power-law tail is close to 4@15,16#.
Another feature ofP(Z,t) is the power law decay ofP(Z
50,t) @1#. It is interesting that in contrast toabsenceof the
two-point correlation of the returns, the magnitude of t
returns is long-range correlated@14,16#. This phenomenon is
called volatility clustering, and considered to be the physi
origin of the temporal scaling behavior in financial dyna
ics.

Very recently, by examining the fluctuation of the volum
imbalance, Plerou, Gopikrishnan, and Stanley discove
that a two-phasebehavior exists in financial markets@17#.
Introducing a parameterr describing the fluctuation in a tim
t, the conditional probability distributionP(V,t,r ) of the
volume imbalanceV is found to be with a single peak for
small value ofr and double peaks for a big value ofr. At a
critical valuer c , the transition from a single peak to doub
peaks occurs. This phenomenon is similar to the ord
disorder phase transition in traditional physics.

On the other hand, different models and theoretical
proaches have been developed to describe financial ma
@9,14,18–27#. Among them, important examples are mino
ity games and percolation models and their variants.

The static percolation model successfully reproduces
fat-tail distribution of the returns and some other styliz
facts of the financial index, but clusters of agents are
generated intrinsically in dynamics. Recently, a dynamic v
sion of the static percolation model, the so-called EZ herd
model, has been proposed@22#. Compared with the static
percolation model, clusters are naturally formed in the
namic process. If alinear relation is assumed between th
volatility uZu and the size of the acting cluster, the power-la
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tail of P(Z,t) of a shorter timet is observed at least in a
certain range ofZ. The exponent is approximately 1.5. How
ever, the magnitude of the returns in the EZ herding mode
not long-range correlated.

To achieve the long-range temporal correlation, a d
namic interaction has been introduced@28#. The interacting
EZ herding model nicely explains stylized facts of financ
markets, at least qualitatively.

The naive minority game@18# is relatively far from real
financial markets. An essential improvement is introduc
an inactive strategy for all agents@24,29#. Then the size of a
cluster fluctuates and it induces the long-range temporal
relation.

The purpose of this paper is to examine the two-ph
phenomenon with the financial indices, taking the Germ
DAX as an example, and more importantly, to investigate
relevant behavior in minority games and herding mode
Special attention is put on the possible relation between v
tility clustering and the two-phase phenomenon.

In the next section, the two-phase phenomenon will
analyzed with the German DAX. In Sec. III, relevant beha
ior will be investigated in minority games. In Secs. IV and
two-phase phenomena will be revealed in the EZ herd
model and the interacting EZ herding model. Finally, Sec.
contains the conclusions.

II. TWO-PHASE PHENOMENON

Phase transitions are important phenomena in traditio
physics. For a order-disorder phase transition in magn
systems, for example, the probability distribution of the o
der parameter for a finite system shows a single peak in
disordered phase, and double peaks in the ordered phase
disordered and ordered states exhibit essentially different
haviors.

Up to date, financial markets are usually considered to
in a single stationary state. Only very recently has some
fort been made to understand whether multiple states exi
financial markets@17#. In Ref. @17#, data of the volume im-
balance are used for demonstrating the two-phase phen
enon. In another recent article, it is observed that a sim
behavior also exists in financial indices@28#. The present
paper extends the finding in Ref.@28#.

Let us denote the time series of a financial index asy(t8).
Following the idea in Ref.@17#, we introduce the fluctuation
r (t) of y(t8) within a time intervalt
©2004 The American Physical Society15-1
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r ~ t !5^uy~ t911!2y~ t9!2^y~ t911!2y~ t9!& tu& t . ~1!

Here ^•••& t is the average overt9 in the time interval
@ t8,t81t#. For a fixedt, we examine the conditional prob
ability distribution P(Z,r )[P(Z,t,r ) of the return Z(t)
5y(t1t8)2y(t8) with a specifiedr. It is observed that the
distribution shows a single peak for a smallr, while double
peaks for a bigr. Therefore, there should be a critical valu
r c in between. This is similar to a phase transition in tra
tional physics.

In Fig. 1,P(Z,r ) of the German DAX from 1994 to 1997
is displayed fort510 min. A single peak forr ,0.1 and
double peaks forr .0.2 are clearly seen. The shapes of t
curves look very similar to those in Ref.@17#. The critical
value is estimated to ber c'0.15.

According to Ref.@17#, the two-phase phenomenon ca
be observed up to a timet of half a day~four hours!, for the
correlating time of financial dynamics is very long. Since t
total time length of our data is not very long, the curv
become quite fluctuating fort longer than half an hour. In
Fig. 2,P(Z,r ) is plotted fort520 min. The curves are simi
lar to those in Fig. 1 and indicater c'0.3. Therefore, the
critical valuer c is roughly proportional tot. By definition of
r (t), this result should be reasonable.

The physical implication of the two-phase phenomenon
simple and clear. When the time seriesy(t8) is stable, the
return Z(t) stays mostly around zero. When the time ser
y(t8) is fluctuating,Z(t) jumps between two peaks. Eve
though this behavior seems natural, it cannot be produce
some popular models. We are especially interested
whether the two-phase phenomenon has something to
with volatility clustering.

Two-phase phenomenon should be important both th
retically and practically. It indicates that there may be tw

FIG. 1. P(Z,r ) of the German DAX from 1994 to 1997 i
displayed fort510 min and different values ofr.
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possible states in financial markets, a more stable state a
more fluctuating state. For example, one may benefit or l
more from trading in the state with double peaks than in
state with a single peak.

III. MINORITY GAMES

The minority game was first introduced to econophys
by Challet and Zhanget al. in 1997 @18#. The model looks
simple and seems to capture some features of real finan
markets. However, it does not offer volatility clustering. T
achieve the long-range temporal correlation of the magnit
of the returns, an essential improvement is to introduce
inactive strategy for all agents@24,29#. Then, the size of a
cluster fluctuates during dynamic evolution, which results
the long-range temporal correlation.

A representative minority game consists ofNa agents and
Np producers.

~1! At a time t8, the agents look at the history of th
financial indexy(t8) up tom time steps before, pay attentio
to the sign ofy(t911)2y(t9), t95t821, . . . ,t82m.

~2! Characterized by the sign ofy(t911)2y(t9), there
are 2m possible states of history. A standard strategy is a r
that one decides to buy or sell for every state of histo
Therefore, there are 22m

standard strategies in total. A speci
strategy is the ‘‘inactive’’ strategy, with which an agent r
mains inactive for any states of history.

~3! At the beginning of the game, each agent definite
takes the inactive strategy, randomly choosess standard
strategies, and keeps all these strategies forever. During
namic evolution, each strategy will be given a dynam
score. The agent decides to buy, sell, or remain inactive
lowing the strategy with the highest score.

~4! A producer is considered as an agent with only o
standard strategy and without the inactive strategy.

FIG. 2. P(Z,r ) of the German DAX from 1994 to 1997 is
displayed fort520 min and different values ofr.
5-2
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~5! If there areN1 buyers andN2 sellers at a timet8,
y(t8)2y(t821)5N12N2 .

~6! If a standard strategy offers the decision of buyi
~selling! at a time t8, while the financial index decrease
~increases!, this strategy gainsuy(t8)2y(t821)u points; oth-
erwise it losesuy(t8)2y(t821)u points. The score of the
inactive strategy always remains zero.

With the above dynamic rules, the initial history ofy(t8),
and initial scores for all strategies, a time seriesy(t8) will be
generated. The above model can be modified in sev
ways. For example, a nonzero score can be given to
inactive strategy. This means that the agents would buy
sell only in the case where they would benefit from the tr
ing. Further,dynamic scoringfor the inactive strategy can
also be introduced. All these versions of minority gam
yield similar results to those we consider in this paper.

In our simulations, we takeNa5501, Np51000, m52,
and s52. The average is taken over 64 runs with differe
initial conditions. The length of each run is 40 000 tim
steps. The average over initial conditions is important si
the dynamics of the minority game isdeterministic.

In Fig. 3, the conditional probability distributionP(Z,r )
has been displayed fort510. For smaller values ofr, the
curves obviously show a central single peak~solid and
dashed lines!. As r gets bigger, double peaks indeed app
~squares and crosses!. However, the central single peak r
mains. This is indisagreementwith real financial markets
For a longer timet, the situation is even worse. The sing
peak is dominating for anyr. This is shown in Fig. 4.

It is known that there is a long-range temporal correlat
of the magnitude of the returns in this improved minor
game. However, our simulations show that the two-ph
phenomenon is absent. The physical origin of such a fai
can be traced back to theperiodic character of minority
games. Even though the inactive strategy has eliminated

FIG. 3. P(Z,r ) of the minority game withNa5501 andNp

51000 is displayed fort510 and different values ofr.
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periodicity from some observables, it seems that periodic
is intrinsic in the minority games we consider in this pap

IV. THE EZ HERDING MODEL

The EZ herding model, first introduced by Eguiluz an
Zimmermann@22#, is a dynamic extension of the static pe
colation models. It consists ofN agents, which form clusters
during dynamic evolution. Initially, each agent is a clust
The dynamics evolves in the following way.

~1! At a time stept8, an agenti ~and thus its cluster! is
selected at random.

~2! With probability a, i becomes active and indicate
whether to buy or sell. Then all agents in the cluster follo
After that, this cluster is broken into a state that each agen
a separate cluster. The size of this cluster is recorded
s(t8).

~3! With probability 12a, i remains inactive. Another
agentj is then selected randomly. Ifi and j are in different
clusters, combine the two clusters into a bigger one.

Herea is a constant, and apparently controls the dynam
evolution. From the view of financial markets, all agents in
cluster share the same information and therefore act in
same way. The step~3! represents transmission of informa
tion. Let us consider the time between two actions as
time unit. If a is close to 1, transmission of information
slow. Agents act almost independently. Ifa is close to 0,
transmission of information is fast. Agents tend to for
larger clusters and act collectively. In other words, 1/a is the
rate of transmission of information.

Numerical simulations@22# show that for a ‘‘critical’’
value of a, the probability distributionP(s) obeys a power
law, at least in a certain range ofs. The exponent is close to
1.5. If a linear relation betweens and volatility uZu is as-
sumed, one can compare it with the value 4 in real mark
@15#.

FIG. 4. P(Z,r ) of the minority game withNa5501 andNp

51000 is displayed fort550 and different values ofr.
5-3
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In Fig. 5, P(Z,r ) of the EZ herding model has been di
played for t510. The total number of the agents isN
510 000, and the constanta is set to 0.05, close to the pos
sible ‘‘critical’’ value @22#. Interestingly, a double-peak struc
ture is observed, even though there is only a short-ra
temporal anticorrelation of the magnitude of the returns
this model @28#. However, the shapes of the double pea
look somewhat different from those of the German DA
Especially, the peak tends to be step-function-like asr be-
comes big.

Because ofabsenceof the long-range correlation of th
magnitude of the returns in this naive herding model,P(Z,r )
of a longert behaves rather differently from that of a short
t. In Fig. 6, P(Z,r ) of t5100 is plotted. The double peak
become very narrow, and there are no data for a biggerr.

To summarize, the minority game with an inactive str
egy offers volatility clustering but does not produce the tw
phase phenomenon, while the EZ herding model is just
posite. Therefore, volatility clustering and the two-pha
phenomenon are two independent characteristics of finan
markets and the relevant dynamic models.

V. THE INTERACTING EZ HERDING MODEL

Similar to the naive minority game, the EZ herding mod
is also rather far from real financial markets. Most imp
tantly, it lacks volatility clustering. The origin should be th
constant a. In real markets, the rate of transmission of info
mation shouldnot be a constant. When stock markets a
very fluctuating, agents are sensitive to the related inform
tion, and the public media report it intensively. Thereforea
should be smaller. When the stock markets remain sta
everyone is not so interested in it anda should be bigger.

FIG. 5. P(Z,r ) of the EZ model withN510 000 anda50.05 is
displayed fort510 and different values ofr.
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Based on such an observation, it is suggested@28# that a at
the timet8 should depend ons(t821), in the form

a5b1cs2d. ~2!

Hered, b, andc are all positive constants. Such an intera
tion may generate a long-range temporal correlation of vo
tility. If a larger cluster acts att821, a at time t8 is smaller
and the agents form larger clusters. As a result, larger c
ters would be picked up. If a smaller cluster acts att821, a
at timet8 is bigger and the agents do not form larger cluste
As a result, smaller clusters would be picked up.

1/b represents the highest rate of transmission of inform
tion restricted by science and technology in our times. Ifb is
comparable tocs2d, the system is not so different than th
EZ herding model. Therefore, we are mainly interested i
small b.

For any fixedb and d, one can achieve a power law
behavior for the tail ofP(s) by adjusting the parameterc

P~s!;s2a. ~3!

For simplicity, we consider only the case ofd51.0. Then the
critical value of c is about 0.6@28#. Keeping in mind the
assumption that the volatilityuZu is proportional to the sizes
of the acting cluster, the interacting EZ herding model rep
duces all the stylized facts of financial markets examined
Ref. @28#, at least qualitatively. Some quantities are ev
quantitatively in agreement with those of real financial m
kets.

For a shorter timet, P(Z,r ) of the interacting EZ herding
model exhibits almost the same behavior as that of the
herding model. This further indicates that the two-phase p
nomenon itself is not much related to the long-range co
lation of the magnitude of the returns.

FIG. 6. P(Z,r ) of the EZ model withN510 000 anda50.05 is
displayed fort5100 and different values ofr.
5-4
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For a longer timet, without the long-range correlation, th
peaks would shrink to narrow ones, andP(Z,r ) would decay
to zero rapidly asr increases. This is shown for the E
herding model in the last section. For the interacting
herding model, however, the magnitude of the returns
long-range correlated. The behavior ofP(Z,r ) is different. In
Fig. 7,P(Z,r ) of t5100 is plotted. The shapes of the doub
peaks look very similar to those of the German DAX, a
different from those of the EZ herding model.

To further understand the behavior ofP(Z,r ), P(Z,r )
with fixed 20,r ,40 is displayed for differentt in Fig. 8.
Apparently, the double peaks tend to be less prominentt
increases. Therefore,r c increases witht. This is consistent
with the discovery in real financial markets in Sec. II. F
nally, we compareP(Z,r ) of the interacting EZ herding
model for 20,r ,40 andt5200 ~squares! with that of the
German DAX for 0.3,r ,0.5 andt510 ~crosses! in Fig. 8.
The two curves overlap nicely. Therefore, one minute in
German DAX roughly corresponds to 10 or 20 time steps
the interacting EZ herding model.

VI. CONCLUSIONS

We have investigated the two-phase phenomenon in
nancial markets with the time series of the German DA
from 1994 to 1997. The conditional probability distributio
P(Z,r )[P(Z,t,r ) shows a single peak for a small value or

FIG. 7. P(Z,r ) of the interacting EZ model withN510 000,
bN510, d51 and c50.6 is displayed fort5100 and different
values ofr.
d

04611
is

s

e
n

fi-

and double peaks for a big value ofr. The transition valuer c
is roughly proportional tot. All these results are consisten
with those obtained with the data of volume imbalance
Ref. @17#.

Even though the minority games with an inactive strate
offer a long-range temporal correlation of the magnitude
the returns, it does not produce the two-phase phenome
In contrast to this, in spite of the absence of the long-ran
correlation in the EZ herding model, the two-phase pheno
enon is observed. Therefore, the long-range correlation
two-phase phenomenon are two independent characteri
of financial dynamics and the relevant dynamic models.

The shape of the double peaks ofP(Z,r ) for the EZ herd-
ing model looks different from that of financial dynamic
especially for a longert. By adding an interaction to the EZ
herding model, the long-range temporal correlation is gen
ated.P(Z,r ) with a big value ofr keeps the double peaks
and the shape is in good agreement with that of the Germ
DAX.
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FIG. 8. P(Z,r ) of the interacting EZ model withN510 000,
bN510, d51 andc50.6 is displayed for 20,r ,40 and different
t, and is compared with that of the German DAX for 0.3,r ,0.5
andt510 min~crosses!. For comparison, curves have been suitab
rescaled by constant factors.
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